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This article presents design and optimization results from an implementation of a novel disturbance decoupling control strategy for
a small-scale unmanned helicopter. Such a strategy is based on the active disturbance rejection control (ADRC) method. It offers
an appealing alternative to existing control approaches for helicopters by combining decoupling and disturbance rejection without
a detailed plant dynamics. The tuning of the control system is formulated as a function optimization problem to capture various
design considerations. In comparison with several different iterative search algorithms, an artificial bee colony (ABC) algorithm is
selected to obtain the optimal control parameters. For a fair comparison of control performance, a well-designed LQG controller is
also optimized by the proposed method. Comparison results from an attitude tracking simulation against wind disturbance show
the significant advantages of the proposed optimization control for this control application.

1. Introduction

In recent years, rotary-wing Unmanned Aerial Vehicles
(UAVs) including quadrotors, helicopters, and ducted fans
are attractive to industries and academia [1, 2]. With the
unique features such as hovering, good maneuverability, and
low costs, they have been applied to diverse domains by
installing different sensors, cameras, or other payloads on
the platform [3, 4]. However, due to the complexity of flight
dynamics, it is still challenging to design an appropriate flight
control system that satisfies the requirement for autonomous
flight.

Small-scale unmanned helicopter is a representative of
the rotary-wing UAVs. It is considered as an inherently
unstable, highly nonlinear, and underactuated system with
significant dynamic coupling. With the small size and agile
maneuverability, it is more susceptible to gust disturbance
than those full-sized counterpart. Furthermore, the dynamic
parameters change with the load and flight conditions. These
factors cause serious challenges in dealing with concerns
about the robustness, disturbance rejection, decoupling, and
other control problems. To address the above problems, the
classical single-input/single-output (SISO) feedback control

methods are implemented in [5–7]. In these researches,
the controller is optimized based on the identified model
established firstly for a small helicopter. Nevertheless, many
researchers have recognized that the complexity nature
of helicopter and better control capability requires more
advanced technologies. Cases include direct adaptive neu-
ral command controller [8], adaptive control methods [9],
nonlinear control methods [10], vision-based guidance con-
trol techniques [11], and intelligent control methods like
fuzzy logic approach [12] and neural network [13]. And
the most pervasive choice in practical applications is the
robust control approach: for example, theKalman filter-based
linear quadratic integral (LQI) approach [14], linear quadratic
regulator (LQR) [15], and the 𝐻∞ control approach [16, 17].
These methods provide a reasonable countermeasure for
both disturbances and multivariable effects of the helicopter.
However, the effectiveness of the prevailing model-based
control approaches is exceedingly dependent on the exact
model and aerodynamic coefficients of the plant. Facing the
complicated control problem of the helicopter, the effective
solution is to compensate the disturbance immediately and
reduce the dependence of plant model.
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Table 1: Physical descriptions of the state and input variables of the helicopter dynamical model.

Variable Physical significance Unit
𝑃 = [𝑋,𝑌,𝑍]𝑇 Position in Earth-fixed coordinate frame m𝑉 = [𝑢, V, 𝑤]𝑇 Velocity vector along body frame X-, Y-, and Z-axes m/sΩ = [𝑝, 𝑞, 𝑟]𝑇 Roll, pitch, and yaw angular rates rad/sΘ = [𝜑, 𝜃, 𝜓]𝑇 Euler angles rad𝑎𝑠, 𝑏𝑠 Longitudinal and lateral main rotor flapping angle rad𝑟𝑓𝑏 Intermediate state in yaw rate feedback controller dynamics N/A
𝑢𝑙𝑎𝑡 lateral cyclic rotor control input N/A𝑢𝑙𝑜𝑛 longitudinal cyclic rotor control input N/A𝑢𝑐𝑜𝑙 collective pitch control input N/A𝑢𝑝𝑒𝑑 tail rotor pedal control input N/A

The main contribution of this paper is introducing a
dynamic decoupling control (DDC) strategy [18] and its
optimizationmethod to a small-scale helicopter.This strategy
is rooted in active disturbance rejection control (ADRC)
that was recently proposed by Han [19]. The key idea of the
method is to treat the total disturbance (incorporating the
interactions among control loops and the unknown external
disturbances) as a state variable, which can be estimated by an
extended state observer (ESO) through the input-output data
of the plant in real time. Consequently, unlike most existing
model-dependent control methods, very little information of
themodel is required for ADRC [20]. ADRC offers a practical
solution to decoupling control problems in the presence of
large uncertainties and has been successfully applied inmany
engineering applications, e.g., aircraft flight control [21] and
the chemical processes [22]. Moreover, in order to simplify
the implementation of ADRC, Gao proposed the linear active
disturbance rejection control (LADRC), which offers much
better performance and needs few parameters to tune, and
detailed comparison studies can be found in [23].

Since the performance of LADRC depends on the con-
vergence speed of state observer, the bandwidth of which is
the most important tuning parameter. Obviously, the trade-
offs between the robustness and performance have always
been difficult, especially for the helicopter. This problem can
be solved by using a multiobjective optimization algorithm
in the simulated environment. Artificial bee colony algo-
rithm (ABC) was first proposed by Karaboga in 2005 [24]
and successfully applied to control optimization, including
optimal tuning of PID controller in [25], optimized LQR
controller in [26], and robust fuzzy PSS design [27]. As we
have known, usual optimization algorithms conduct only
one search operation in one iteration, but ABC algorithm
can conduct both local search and global search in each
iteration; as a result, the probability of finding the optimal
parameters is significantly increased, which efficiently avoids
local optimum to a large extent.

This paper considers a design and optimization of the
DDC controller used in our TREX-600 helicopter. As a
controlled plant, the dynamical model is obtained through
the system identification method in previous work [26]. The
main idea can be characterized as follows: (i) in the design
of decoupling control, all the information needed is only the

predetermined input-output pairing of helicopter’s dynamic
model, (ii) the effect of one input to all other outputs that
is not paired with, namely, the cross channel interference
is viewed as a ‘disturbance’ to be actively estimated and
canceled out in DDC framework, and (iii) the parameter
tuning problem is transformed into a functional optimization
problemdefined by a combination of different control perfor-
mance indexes, and ABC algorithm is introduced to calculate
the optimal solution. Using this approach, we can optimize
controllers with different control requirement.

The paper is organized as follows. In Section 2, the
helicopter dynamical model under consideration is briefly
introduced. Section 3 describes how to use DDC strategy
to decouple the helicopter. Section 4 formulates the param-
eter optimization problem. Simulation tests on the model
are shown in Section 5. Finally, the main conclusions are
summarized in Section 6.

2. System Model for Unmanned
Small-Scale Helicopter

Based on the first principle approach, the dynamics of
helicopter is regarded as a six-degrees-of-freedom rigid-body
dynamics augmented with a simplified main rotor flapping
dynamics and a factory-installed yaw rate gyro dynamics. As
illustrated in Figure 1 and summarized in Table 1, this model
contains fifteen states and four inputs. Detailed information
of the physical parameters and modeling structure can be
found in [28]. A brief overview of the flight dynamical model
is presented next.

The translational motion and rotational motion of the
helicopter [15] are described as

𝑃̇ = 𝑅 (Θ)𝑉,
Θ̇ = 𝑆 (Θ)Ω,
𝑉̇ = 𝐹𝑏𝑚 + 𝐹𝑔𝑚 − Ω × 𝑉
Ω̇ = 𝐼−1 [𝑀𝑏 − Ω × (𝐼Ω)]

(1)

where𝐹𝑔 = [−𝑚𝑔 sin 𝜃,𝑚𝑔 sin 𝜙 cos 𝜃,𝑚𝑔 cos 𝜃 cos𝜙]𝑇 is the
gravity force vector projected onto the body frame (BF); 𝑚
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Figure 1: Illustration for helicopter states and coordinates.

is the helicopter mass; 𝐼 = diag{𝐼𝑋𝑋, 𝐼𝑌𝑌, 𝐼𝑍𝑍} is the inertial
moment matrix about the reference axes; 𝐹𝑏 and𝑀𝑏 denote
the combined aerodynamic force and moment vectors acting
on the helicopter center of gravity (CG), respectively. The
transformation matrices 𝑅 and 𝑆 are, respectively, given as

𝑅 = [[[
[

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 + 𝑠𝜙𝑐𝜓−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃
]]]
]

, (2)

𝑆 = [[[[
[

1 𝑡𝜃𝑠𝜙 𝑡𝜃𝑐𝜙0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙𝑐𝜃

𝑐𝜙𝑐𝜃

]]]]
]

, (3)

in which the compact notations 𝑠(∗), 𝑐(∗), and 𝑡(∗) denote
sin(∗), cos(∗), and tan(∗), respectively.

In the helicopter system, 𝐹𝑏 and 𝑀𝑏 are generated by
the aerodynamic forces of the fuselage and the control
forces which originate from the main rotor thrust and tail
rotor thrust. Generally, we calculate 𝐹𝑏 and𝑀𝑏 without the
consideration of the aerodynamic forces of fuselage due to the
relatively small influence on the model. Therefore, the force
andmoment components in the BF are, respectively, given by

𝐹𝑏 = [[
[
𝐹𝑋𝐹𝑌𝐹𝑍

]]
]

= [[
[

−𝑇𝑚𝑟 sin 𝑎𝑠𝑇𝑚𝑟 sin 𝑏𝑠 − 𝑇𝑡𝑟−𝑇𝑚𝑟 cos 𝑎𝑠 cos 𝑏𝑠
]]
]

, (4)

𝑀𝑏 = [[
[

𝐿
𝑀
𝑁

]]
]

= [[[
[

(𝐾𝛽 + 𝑇𝑚𝑟𝐻𝑚𝑟) sin 𝑏𝑠 − 𝑇𝑡𝑟𝐻𝑡𝑟

(𝐾𝛽 + 𝑇𝑚𝑟𝐻𝑚𝑟) sin 𝑎𝑠𝑁𝑚𝑟 + 𝑇𝑡𝑟𝐷𝑡𝑟

]]]
]

(5)

where 𝑇𝑚𝑟, 𝑁𝑚𝑟, and 𝑇𝑡𝑟 are the main rotor thrust and
moment and the tail rotor thrust, respectively; 𝐷𝑡𝑟 is the
distance from the CG to the tail rotor hub, along the 𝑥
direction; 𝐻𝑚𝑟 and 𝐻𝑡𝑟 are the distance from the CG to
the main rotor and tail rotor hub, along the 𝑧 direction,
respectively, and 𝐾𝛽 is the main rotor spring constant.

Themain rotor flapping dynamics, which are common to
all small-scale helicopters, is described by the following two
coupled first-order differential equations [29]:

[ ̇𝑎𝑠
𝑏̇𝑠] = [[[

[
−𝑞 − 𝑎𝑠𝜏𝑓 + 𝐴𝑏𝑏 + 𝐴 𝑙𝑜𝑛𝑢𝑙𝑜𝑛
−𝑝 + 𝐵𝑎𝑎𝑠 − 𝑏𝑠𝜏𝑓 + 𝐵𝑙𝑎𝑡𝑢𝑙𝑎𝑡

]]]
]

(6)

where 𝜏𝑓 is the main rotor time constant; 𝐴𝑏 and 𝐵𝑎 are
cross coupling derivatives that influence the longitudinal
and lateral flapping motions; and 𝐴 𝑙𝑜𝑛 and 𝐵𝑙𝑎𝑡 are effective
linkage gains.

Since the high sensitivity of the bare yaw channel dynam-
ics, a feedback yaw rate controller is widely used in small-
scale helicopters.TheUAVsystem reserved this feature for the
convenience of manual control. Accordingly, the augmented
yaw dynamics are modeled as a first-order bare airframe
dynamics with a yaw rate feedback represented by a simple
first-order low-pass filter [30].The corresponding differential
equations are given as

[ ̇𝑟
̇𝑟𝑓𝑏] = [𝑁𝑟𝑟 + 𝑁𝑝𝑒𝑑 (𝑢𝑝𝑒𝑑 − 𝑟𝑓𝑏)−𝐾𝑟𝑓𝑏𝑟𝑓𝑏 + 𝐾𝑟𝑟 ] (7)

where 𝑁𝑟, 𝑁𝑝𝑒𝑑, 𝐾𝑟, and 𝐾𝑟𝑓𝑏 are the parameters to be
identified.

3. Dynamic Decoupling Control (DDC)
of the Helicopter

3.1. LESOBasedDynamic Decoupling ControlMethod. Linear
Active Disturbance Rejection Controller (LADRC) is a novel
control method which is parameterized from ADRC [20]
to simplify the tuning process. In this work, LADRC-based
DDC approach [18] is implemented to tackle the decoupling
problem for helicopter attitude dynamics. Define 𝑓𝑖 as the
combined effect of the internal coupling dynamics and
external disturbances in each channel:

𝑓𝑖 = ℎ𝑖 (𝑥, 𝑥(1), ⋅ ⋅ ⋅ 𝑥(𝑛𝑖−1), 𝑤𝑖) + 𝑚∑
𝑗=1

𝑏𝑖𝑗𝑢𝑗 − 𝑏𝑖𝑖𝑢𝑖 (8)

Then, the helicopter model can be seen as a set of coupled
input-output equations with a predetermined relationship:

𝑦(𝑛1)
1 = 𝑓1 + 𝑏11𝑢1

...
𝑦(𝑛2)
𝑖 = 𝑓𝑖 + 𝑏𝑖𝑖𝑢𝑖

...
𝑦(𝑛𝑚)
𝑚 = 𝑓𝑚 + 𝑏𝑚𝑚𝑢𝑚

(9)
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where 𝑤𝑖 and 𝑥 are external disturbances and state vector,
respectively; 𝑢𝑖 and 𝑦𝑖 are the dominant input and output of
the 𝑖𝑡ℎ loop (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚), respectively; 𝑏𝑖𝑗 is the input gain;
superscript (𝑛𝑖) denotes the 𝑛𝑖 𝑡ℎ order derivative. Assuming
the order 𝑛𝑖 are given, the numbers of inputs and outputs are
the same.

Most existing decoupling control approaches assume
the knowledge of the elaborate plant model or disturbance
model, which is a considerable challenge in practice. LADRC
makes a breakthrough that realistically estimates 𝑓𝑖 in real
time from input-output data instead of identifying an accu-
rate mathematical model. The idea is introduced next.

Define an enlarged state vector 𝑥𝑖 = (𝑦𝑖, ̇𝑦𝑖, ⋅ ⋅ ⋅ , 𝑦(𝑗−1)
𝑖 ,𝑓𝑖), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑖, in which𝑓𝑖 is added as an extended state.

Assume 𝑓𝑖 is differentiable and V𝑖 = ̇𝑓𝑖 is bounded. Then the
augmented state-space form of 𝑖𝑡ℎ loop in (9) is represented
as

𝑥̇𝑖 = 𝐴𝑥 + 𝐵𝑢𝑖 +𝐺V𝑖
𝑦 = 𝐶𝑥𝑖 (10)

where

𝐴 =
[[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0
... ... ... d

...
0 0 0 ⋅ ⋅ ⋅ 1
0 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]
]

,

𝐵 =
[[[[[[[[[
[

0
0
...

𝑏0,𝑖0

]]]]]]]]]
]

,

𝐺 =
[[[[[[[[[
[

0
0
...
0
1

]]]]]]]]]
]

,

𝐶 =
[[[[[[[[[
[

1
0
...
0
0

]]]]]]]]]
]

𝑇

.

(11)

LADRC

PlantPD
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[x1, x2, · · · , xn ,i

]

r u0,i

fi

+ −
1/b0,i

ui yi

Figure 2: The block diagram of LADRC.

Based on the state-space model, a linear extended state
observer (LESO) is designed to estimate 𝑥𝑖:

̇̂𝑥𝑖 = 𝐴𝑥̂𝑖 + 𝐵𝑢𝑖 + 𝐿𝑖 (𝑦𝑖 − 𝑦𝑖)
𝑦̂𝑖 = 𝑥̂𝑖 (12)

where 𝐿𝑖 = [𝑙1,𝑖, 𝑙2,𝑖, ⋅ ⋅ ⋅ , 𝑙𝑛𝑖+1,𝑖]𝑇 is the observer gain needed
to be chosen.

With a properly selected observer gain, the system states
and 𝑓𝑖 will be accurately estimated by the LESO in real time.
The following control law for 𝑖𝑡ℎ loop can be designed to
reduce the closed-loop system approximately to a unit gain
cascaded integrator plant 𝑦(𝑛𝑖)

𝑖 = 𝑓𝑖 + 𝑏𝑖𝑖𝑢𝑖 ≈ 𝑢0,𝑖:
𝑢𝑖 = 𝑢0,𝑖 − 𝑓𝑖𝑏𝑖,𝑖 (13)

It is a relatively simple control problem, which is solved
by using a PD controller with a feedforward term:

𝑢𝑖,0 = 𝑘1,𝑖 (𝑟𝑖 − 𝑥1,𝑖) + ⋅ ⋅ ⋅ + 𝑘𝑛𝑖,𝑖 (𝑟(𝑛𝑖−1)𝑖 − 𝑥𝑛𝑖,𝑖
) + 𝑟(𝑛𝑖)𝑖 (14)

where (𝑘1,𝑖, 𝑘2,𝑖, ⋅ ⋅ ⋅ , 𝑘𝑛,𝑖) are the controller gains to be selected
and 𝑟𝑖 is the trajectory reference. The structure of LADRC is
shown in Figure 2.

3.2. Parameterization of LADRC. For simplicity and practi-
cality, both of the LESO and PD controller are parameterized
in a special case as suggested in [18], where all the observer
poles and controller poles are placed at −𝜔0,𝑖 and −𝜔c,𝑖,
respectively. The characteristic polynomials of (12) and (14)
are constituted, respectively, as

𝜆𝑜,𝑖 (𝑠) = 𝑠𝑛𝑖+1 + 𝑙1,𝑖𝑠𝑛𝑖 + ⋅ ⋅ ⋅ + 𝑙𝑛𝑖+1,𝑖 = (𝑠 + 𝜔0,𝑖)𝑛𝑖+1 (15)

𝜆𝑐,𝑖 (𝑠) = 𝑠𝑛𝑖 + 𝑘𝑛𝑖,𝑖𝑠𝑛𝑖 + ⋅ ⋅ ⋅ + 𝑘1,𝑖 = (𝑠 + 𝜔c,𝑖)𝑛𝑖 (16)

with

𝑙𝑗,𝑖 = (𝑛𝑖 + 1)!𝜔𝑗
0,𝑖𝑗! (𝑛𝑖 + 1 − 𝑗)! , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑖 + 1 (17)

𝑘𝑗,𝑖 = 𝑛𝑖!𝜔𝑛𝑖−𝑗+1
𝑐,𝑖(𝑗 − 1)! (𝑛𝑖 − 𝑗 + 1)! , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑖 (18)

It makes 𝜔0,𝑖, 𝜔c,𝑖 the bandwidth and the only tuning
parameters for LESO and the PD controller, respectively. In
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Figure 3: The block diagram of the attitude decoupling controller.

general, higher bandwidth corresponds to better transient
response, disturbance estimation, and rejection. However,
too large a value of 𝜔0,𝑖 would cause oscillation in states. The
measurement noise and excessive increase of 𝜔c,𝑖 make the
control signal oversize in magnitude and change rate. On the
other hand, an appropriate selection of 𝜔0,𝑖 and 𝜔c,𝑖 should
be subjected to physical limits and dynamic characteristics of
the plant.

As seen above, the LADRCapproach is a practicalmethod
for decoupling control ofMIMO system.The satisfied perfor-
mance will be obtained by tuning only two parameters 𝜔0,𝑖

and 𝜔c,𝑖. Furthermore, it works without the detail model of
the original plant, except the orders of each input-output pairs
and input gains 𝑏𝑖𝑖.The proofs of stability are given in [31, 32].

3.3. Attitude Controller Design for the Helicopter. As shown
in Figure 3, the decoupling controller is designed to have
the form of three LADRC controllers. Moreover, we selected
their orders according to the relative degrees of the dynamical
model. It is assumed that the controlled outputΘ = [𝜑, 𝜃, 𝜓]𝑇
can be measured directly and that the trim value 𝑟 =[𝜑𝑟, 𝜃𝑟, 𝜓𝑟]𝑇 is within the physical limitation of helicopter
flight.

To use the DDC approach, the order of input-output
pairs in the model must be explicit. Figure 4 displays the
interconnection of the helicopter subsystems, which offers a
more physically meaningful design. Note that the helicopter
attitude dynamics can be separated in two interconnected
subsystems [6], i.e., the lateral and longitudinal subsystem
and yaw dynamics.The cyclic commands 𝑢𝑙𝑜𝑛 and 𝑢𝑙𝑎𝑡 control
the pitch and roll moment, and the pedal command 𝑢𝑝𝑒𝑑
manipulates the heading of the helicopter. In this case, we
set the lateral and longitudinal subsystem as two third-order
systems and the yaw dynamics as a second-order system.

According to aforementioned discussion and analysis, we
define 𝑓1, 𝑓2, and 𝑓3 as the total disturbance in each channel
and rewrite (9) as

𝜙(𝑛1) = 𝑓1 + 𝑏01𝑢𝑙𝑎𝑡
𝜃(𝑛2) = 𝑓2 + 𝑏02𝑢𝑙𝑜𝑛
𝜓(𝑛3) = 𝑓3 + 𝑏03𝑢𝑝𝑒𝑑

(19)

where 𝑏01, 𝑏02, and 𝑏03 are the input gains of lateral cyclic,
longitudinal cyclic, and tail rotor collective pitch, respectively.
In the LADRC design, these input gains are treating as
another tuning parameter besides 𝜔0,𝑖 and 𝜔c,𝑖 to improve
the performance of the reduced order closed-loop system.
Note that the orders of each loop are 𝑛1 = 𝑛2 = 3 and𝑛3 = 2, and the LADRC-based DDC controller can be
realized by designing the LESO and PD controller for each
loop, accordingly.

4. Optimization Problem Formulation

4.1. The Objective Function. The proposed LADRC tuning
method using ABC is schematically shown in Figure 5, where
the plant is the identified model of the TREX-600 helicopter.
As stated above, the primary concern in the implementation
of LADRC is maximizing the bandwidth 𝜔0,𝑖 and 𝜔c,𝑖, and
identifying a suitable value of 𝑏𝑖𝑖 while satisfying the system
constraints and design objective. It can be accomplished
by forming a functional optimization problem. Also, the
design specifications are comprehensively represented by a
new objective function. In the optimization procedure, by
changing the closed-loop step responses according to its
automatically selected controller parameters and calculating
the objective function value at every generation, the iterative
algorithm searches the optimal parameters for the controller
subjected to the design specifications.

In the tuning of the controller, the objective function
can be formed by different performance index that considers
the step responses of the entire system. Typical performance
index in the time domain includes integral square error (ISE),
integral of absolute error (IAE), integral time absolute error
(ITAE) [33], rise time (𝑇𝑟), settling time (𝑇𝑠), overshoot (𝑂𝑆),
and steady-state error (𝐸𝑠𝑠). The selection of these factors
and form of the function can be determined depending on
the design requirements. In this work, the desired control
performance should have a small or no overshoot in the
step response with a minimal settling time, and the control
signal should be smooth within the physical limit. Hence,
we defined the objective function 𝐹 in this work as a linear
combination of the ISE, integral of the square of the control
signal, the overshoot𝑂𝑆, and the one percent settling time 𝑇𝑠

[34]:

𝐹 = 3∑
𝑖=1

𝛼∫ (𝑦𝑖 − 𝑟)2 + 𝛽∫𝑢𝑖2 + 𝜎 (𝑂𝑆𝑖) + 𝜀 (𝑇𝑠,𝑖
) (20)

where the variables of𝛼,𝛽,𝜎, and 𝜀 are the adjustment param-
eters. The values of these parameters are generally selected
by using trial-and-error method. During the minimization
of the objective function, all of the performance indexes are
minimized and all of the disadvantaged controller parameters
caused to system unstable or a poor performance will be
eliminated by the algorithm.

Using the proposed objective function (20), the parame-
ter tuning for the controller becomes a function optimization
problem. This method combines a variety of performance
indices which can be selected and weighted as required.Then
the desired control performance and its parameter setting
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[ ̇ṙrfb]=[Nrr+ Nped(uped − rfb)

−Krfbrfb + Krr
]

[[[[
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Figure 5: LADRC tuning scheme with ABC.

can be found by minimizing the value of (20). It makes this
method different to the traditional optimal control method.
Since (20) is nonlinear and discontinuous, simple search
methods are usually lost in local optimum, as shown in [35].
Advanced searchmethods like GA, PSO, and ABC provide us
with efficient solutions for solving this problem.

4.2. ABC Algorithm. In order to introduce the search mech-
anism of ABC algorithm, we should define three essential
components: employed bees, unemployed bees, and food
source [36]. And the unemployed bees are divided into the
following bees and scout bees. The population of the colony
bees is 𝑁𝑠, the number of employed bees is 𝑁𝑒, and the
number of unemployed bees is𝑁𝑢 , which satisfies the relation𝑁𝑠 = 2𝑁𝑒 = 2𝑁𝑢. We also define 𝐷 as the dimension of
solution vector, i.e., the number of the unknown parameters.
ABC algorithm treats each solution vector as a food source
and combines the global search of unemployed with the local
search of employed bees.The detailed procedure of executing
the proposed algorithm is described as follows.

Step 1. Randomly initialize a set of possible solutions(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑁𝑠
), and the particular solution 𝑥𝑖 can be governed

by

𝑥𝑗
𝑖 = 𝑥𝑗

min + rand (0, 1) (𝑥𝑗
max − 𝑥𝑗

min) (21)

where 𝑗 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} denotes the 𝑗 th dimension of the
solution vector. 𝑥𝑗

min and 𝑥𝑗
max mean the lower and upper

bounds, respectively.

Step 2. Apply a specific function to calculate the fitness of the
solution𝑥𝑖 according to the following equations and select the
top𝑁𝑒 best solutions as the number of the employed bees:

𝑓𝑖𝑡𝑖 = 1(1 + 𝐹𝑖) (22)

where 𝑓𝑖𝑡𝑖 is the fitness function and 𝐹𝑖 is objective function
depicted in (20).

Step 3. Each employed bee searches new solution in the
neighborhood of the current position vector in the 𝑛 th
iteration as follows:

V𝑗𝑖 = 𝑥𝑗
𝑖 + 𝜆𝑗

𝑖 (𝑥𝑗
𝑖 − 𝑥𝑗

𝑘
) (23)

where 𝑘 ∈ {1, ⋅ ⋅ ⋅ , 𝐷}, 𝑘 ̸= 𝑖, both 𝑘 and 𝑗 are randomly
generated, and 𝜆𝑗

𝑖 is a random parameter in the range from
-1 to 1. In order to ensure that the algorithm evolves to the
global optimal, we apply the greedy selection equation (22)
to choose the better solution between V𝑗𝑖 and 𝑥𝑗

𝑖 into the next
generation:

𝑥𝑗
𝑖 = {{{

V𝑗𝑖 , 𝑓𝑖𝑡 (V𝑗𝑖 ) > 𝑓𝑖𝑡 (𝑥𝑗
𝑖 )

𝑥𝑗
𝑖 , 𝑓𝑖𝑡 (V𝑗𝑖 ) ≤ 𝑓𝑖𝑡 (𝑥𝑗

𝑖 ) (24)

Step 4. Each following bee selects an employed bee to trace
according to the parameter of probability value. The formula
of the probability method is described as

𝑝𝑖 = 𝑓𝑖𝑡𝑖∑𝑁𝑒
𝑖=1 𝑓𝑖𝑡𝑖 (25)

Step 5. The following bee searches in the neighborhood of
the selected employed bee’s position to find new solutions.
Update the current solution according to their fitness.

Step 6. If the search time trial is larger than the pre-
determined threshold limit and the optimal value cannot
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Table 2: Tuning performance of trial-and-error method, GA, PSO, and ABC algorithm.

Applied process Time domain performance𝑇𝑟/s 𝑂𝑆/% 𝑇𝑠/𝑠 𝐸𝑠𝑠/rad 𝐹
trial-and-error

0.70 2.33 1.17 0
1.23510.55 1.30 0.77 0

0.37 1.86 0.65 0

GA
0.596 2.13 0.97 0

1.0130.514 1.74 0.80 0
0.303 1.27 0.48 0

PSO
0.62 2.01 0.94 0

0.97130.53 1.82 0.81 0
0.30 1.11 0.40 0

ABC
0.60 2.08 0.96 0

0.93150.57 1.60 0.86 0
0.35 0.72 0.31 0

be improved, the location vector can then be reinitialized
randomly by scout bees according to the following equation:

𝑥𝑖 (𝑛 + 1)
= {{{

𝑥min + rand (0, 1) (𝑥max − 𝑥min) , 𝑡𝑟𝑖𝑎𝑙 > 𝑙𝑖𝑚𝑖𝑡
𝑥𝑖 (𝑛) , 𝑡𝑟𝑖𝑎𝑙 ≤ 𝑙𝑖𝑚𝑖𝑡

(26)

Step 7. Output the best solution parameters achieved at the
present time, and go back to Step 3 until termination criteria𝑇max are met.

5. Simulation Tests

For best performance of optimization, we compare the results
of ABC with the existing search iterative algorithm methods,
including the trial-and-error method, GA, and PSO. We set
the population size as 20 and iteration numbers as 50 for
each algorithm. The adjustment parameters (𝛼, 𝛽, 𝜎, 𝜀) are
selected as 1, 1, 0.1, and 0.2, respectively. The step command
with the value of 0.2618 rad is applied to each of the input
channels. 0.1%measurementwhite noise is added to the plant.
For GA, the crossover probability and mutation probability
are chosen as 0.8 and 0.2, respectively. For PSO, the optimal
parameters, i.e., social, individual and inertia weight, are set
to 2, 2, and 0.8, respectively. Finally, for ABC the threshold
is set to limit =5. The results are presented in Table 2 and
Figure 8.

Figure 6 shows the evolution curves of ABC, GA, and
PSO. The figure demonstrates that the objective function
reduces as the generation iterates with time, gradually
converging to an optimal result. Compared with GA and
PSO, ABC achieves a better result with smaller objective
function after 28 iterations. Table 2 indicates that all of the
controllers have no steady-state error and that the trial-
and-error method gets the largest time domain index. The
ABC-optimized LADRC responds to the input and stabilizes
the system faster than other three methods. In summary,
the results suggest that our proposed method outperforms
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Figure 6: Evolutionary curves of the three algorithms.

other techniques in terms of rising time, settling time, and
quadratic performance index.

To assess the improvements of the proposed controller,
the closed-loop performance of helicopter attitude control
withABC-based LADRC and LQG is compared and analyzed
by attitude tracking test under wind disturbance. The LQG
controller is designed based on the linear model of Trex-
600 helicopter; it is also implemented experimentally in [13].
As shown in Figure 7, the LQG controller consists of a
state estimator based on Kalman filter and a MIMO state-
feedback controller, which ensures that the output Θ tracks
the reference command 𝑟 and rejects process disturbances
and measured output noise. The Kalman filter produces esti-
mates 𝑥̂ of the plant. The observer gain 𝐿𝑓 and optimal state
feedback gain 𝐾𝑓 are achieved by solving two independent
Riccati equations [14]
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Table 3: Parameters of LADRC and LQG.

Results Controllers
LADRC LQG

Optimal parameters

𝑤0,1 = 126.50
𝑤𝑐,1 = 11.81
𝑏01 = 658.66
𝑤0,2 = 116.67
𝑤c,2 = 12.40
𝑏02 = 638.15
𝑤0,3 = 160.45
𝑤c,3 = 19.32
𝑏03 = −163.33

𝑄 = diag(0, ⋅ ⋅ ⋅ , 0, 79.11, 242.98, 72.78)
𝑅 = diag(1, 1, 1)

𝑄𝑓 = diag([0.01, 0.01, 0.01]);
𝑅𝑓 = diag([0.01, 0.01, 0.01]);

𝐹 1.1355 1.7086
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Figure 7: LQG controller.

𝐾𝑓 = 𝑅−1𝐵𝑇𝑃
𝐴
T
𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵T𝑃 +𝑄 = 0 (27)

𝐿𝑓 = 𝑃f𝐶Tin𝑅−1f
𝑃f𝐴

T
in +𝐴in𝑃f − 𝑃f𝐶Tin𝑅−1f 𝐶in𝑃f +𝐺𝑄f𝐺T = 0

(28)

where 𝑄 and 𝑅 are symmetric weight matrices; Qf and
Rf are covariance matrices of process disturbances 𝑤 and
measured output noise V, respectively. It is obvious that the
choice of weighting matrices (𝑄,𝑅) dominates the closed-
loop performance.

Using the proposed method to optimize LQG, Table 3
summarizes the optimal parameters and objective values of
these two controllers. It is observed that objective value of
LQG is 1.5 times larger than that of LADRC. Hence, LADRC
achieves better performance than LQG.

To simulate the measurement noise of the helicopter,
the white noise is included in the output of the plant. The
wind turbulence disturbances (W𝑋, W𝑌, W𝑍), as shown in
Figure 8, are also injected to the velocity vector 𝑉 along
body frame XB-, YB-, and ZB-axes. Here, a shaping filter [37]

Figure 8: Wind disturbance vector.

modeled by independently exciting of the correlated Gauss-
Markov processes is chosen for the wind components:

[[[
[

𝑊̇𝑋

𝑊̇𝑌

𝑊̇𝑍

]]]
]

=
[[[[[[
[

− 1𝜏𝑠 0 0
0 − 1𝜏𝑠 0
0 0 − 1𝜏𝑠

]]]]]]
]

[[
[
𝑊𝑋𝑊𝑌𝑊𝑍

]]
]

+ 𝜌𝐵𝑊[[
[
𝑑𝑋𝑑𝑌𝑑𝑍

]]
]

(29)

where 𝜏𝑠 is the correlation time of the wind; 𝜌 is the scalar
weighting factor; 𝐵𝑊 is the turbulence input identity matrix;𝑑𝑋, 𝑑𝑌, and 𝑑𝑧 are independent with zero mean.

Figures 9 and 10 show the roll and pitch responses and
tracking error of the two control systems. We can observe
that LADRC controller has more advanced performance in
attitude tracking and disturbance resisting as compared to its
counterpart. Figure 11 shows that LADRCcontroller responds
faster and has smaller interfere between channels. For the
LQG controller, however, the oscillation of 𝑢𝑙𝑜𝑛 increases
apparently when there is a change in 𝑢𝑙𝑎𝑡. Figures 12 and 13
show the angular velocities versus their estimates of both
controllers. LESO has more effective estimation performance
than Kalman filter, which means faster compensating for the
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Figure 10: Tracking error of both controllers.

coupling effects and disturbances. All the simulation results
indicate that the proposed ABC-optimized LADRC is the
perfect control optimization strategy in terms of both the
control performance and efficiency of design and parameter
tuning. It obtains the lowest objective value and fastest
convergence speed. But above all, LQG relies on the precise
linear model of the plant, while LADRC only needs the input
gains 𝑏𝑖𝑖 that can be even considered as the tuning parameter.

6. Conclusion

In this paper, the ABC algorithm is first applied to tune
the controller parameters of LADRC-based DDC controller
for a small-scale unmanned helicopter. With the proposed

method, the decoupling control of small helicopters is refor-
mulated as a disturbance rejection one, with only the orders
of each input-output pairs of the system. The controller opti-
mization is formulated as a function optimization problem
and an objective function is proposed for multiple conflicting
performance specifications. Four different optimization algo-
rithms are investigated and evaluated in the search of global
optimum. The proposed controller is also compared with
the traditional LQG technique on the performance of state
estimation and disturbance rejection. The simulation results
verify the robustness and effectiveness of the ABC-optimized
DDC strategic. As future works, the presented strategic will
be utilized to design a path following controller for our
helicopter and test its reliability in real flight experiments.
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Acronyms

ABC: Artificial bee colony
ADRC: Active disturbance rejection control
BF: Body frame
CG: Center of gravity
DDC: Dynamic decoupling control
ESO: Extended state observer
GA: Genetic algorithm
IAE: Integral of absolute error
ISE: Integral square error
ITAE: Integral time absolute error

LADRC: Linear active disturbance rejection control
LESO: Linear extended state observer
LQG: Linear quadratic Gaussian
LQI: Linear quadratic integral
LQR: Linear quadratic regulator
MIMO: Multi-input multi-output
PD: Proportional derivative
PID: Proportional integral derivative
PSO: Particle swarm optimization
SISO: Single-input/single-output
UAVs: Unmanned aerial vehicles.
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